

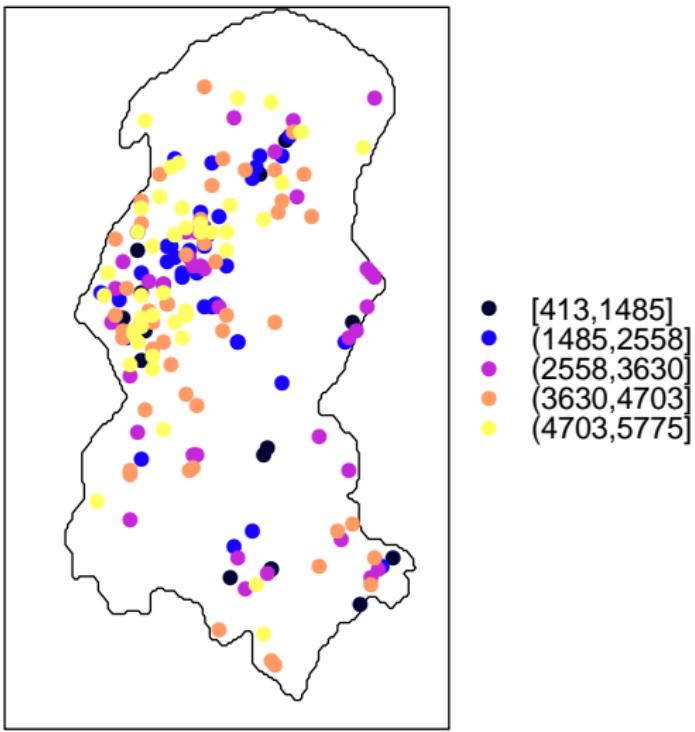
Point processes in space and time

- Data: $(s,t) =$ location (probably in 2D), time of an event
- Examples:
 - Ecology: nest establishment, predation, death of tree
 - Plant pathology: infection of individual, death
 - Economics: farm consolidation, farm bankruptcy
 - Epidemiology: location, time of diseased individuals
 - Agronomy / soils: when a field planted in corn following corn
 - In general: where and when events occur
- Cressie calls these 'space-time shock point process' (p 720)
 - events at specific times and locations

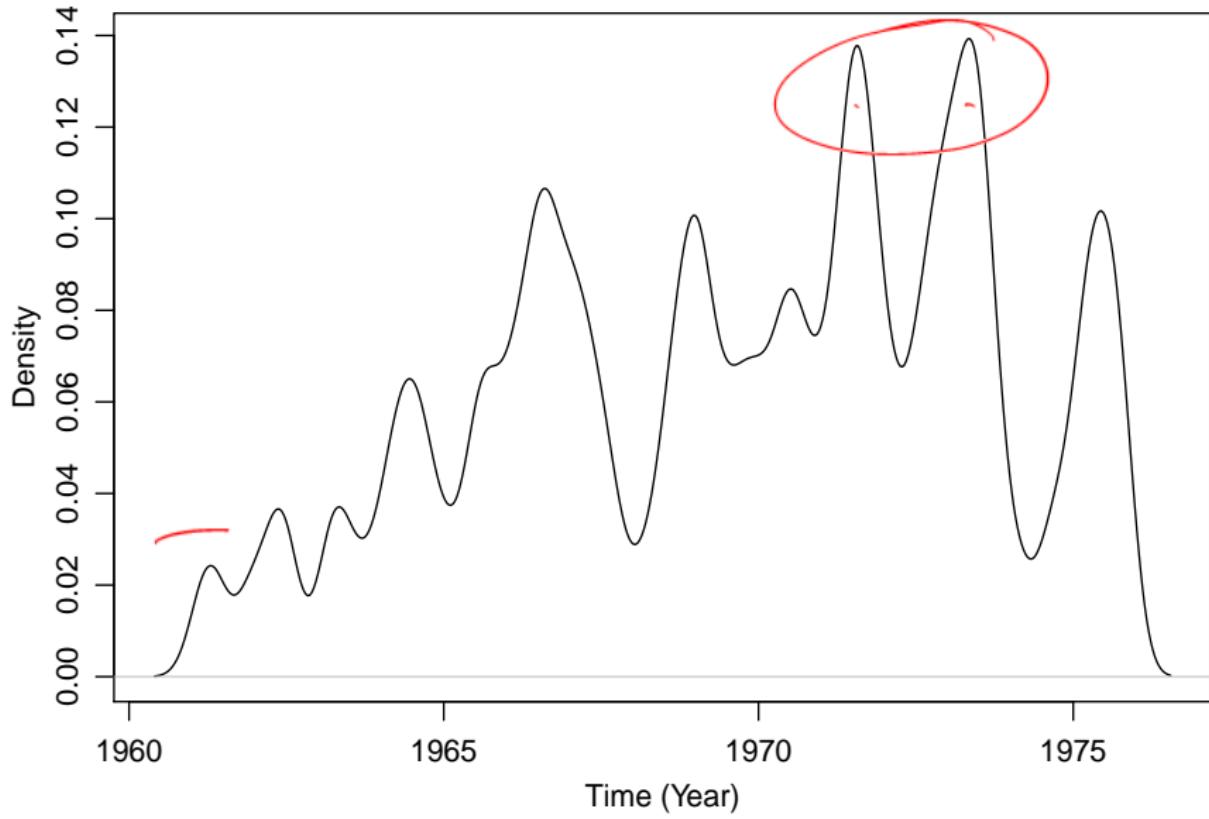
Point processes in space and time

- Not same as space-time survival point process
 - event at a location for an interval of time
 - e.g. presence of tree, infected plant
 - We'll focus on shock processes
 - events at specific locations and times
- Multiple ways to think about this
 - as point process in 3 dimensions (x, y, t)
 - as marked spatial point process (x, y), continuous mark (time)
- Many examples from spatial epidemiology, focus on clustering
 - Is event (disease) near other events?
 - near defined as near in space **and** near in time

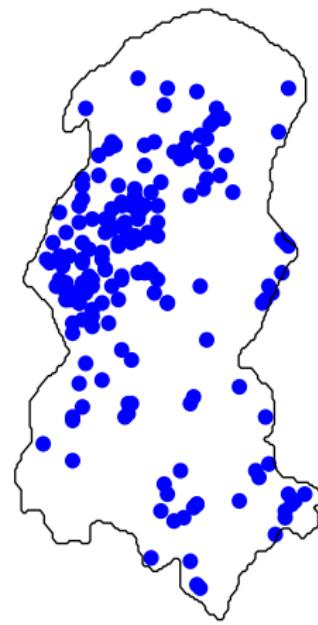
Example: Burkitt's lymphoma in Uganda



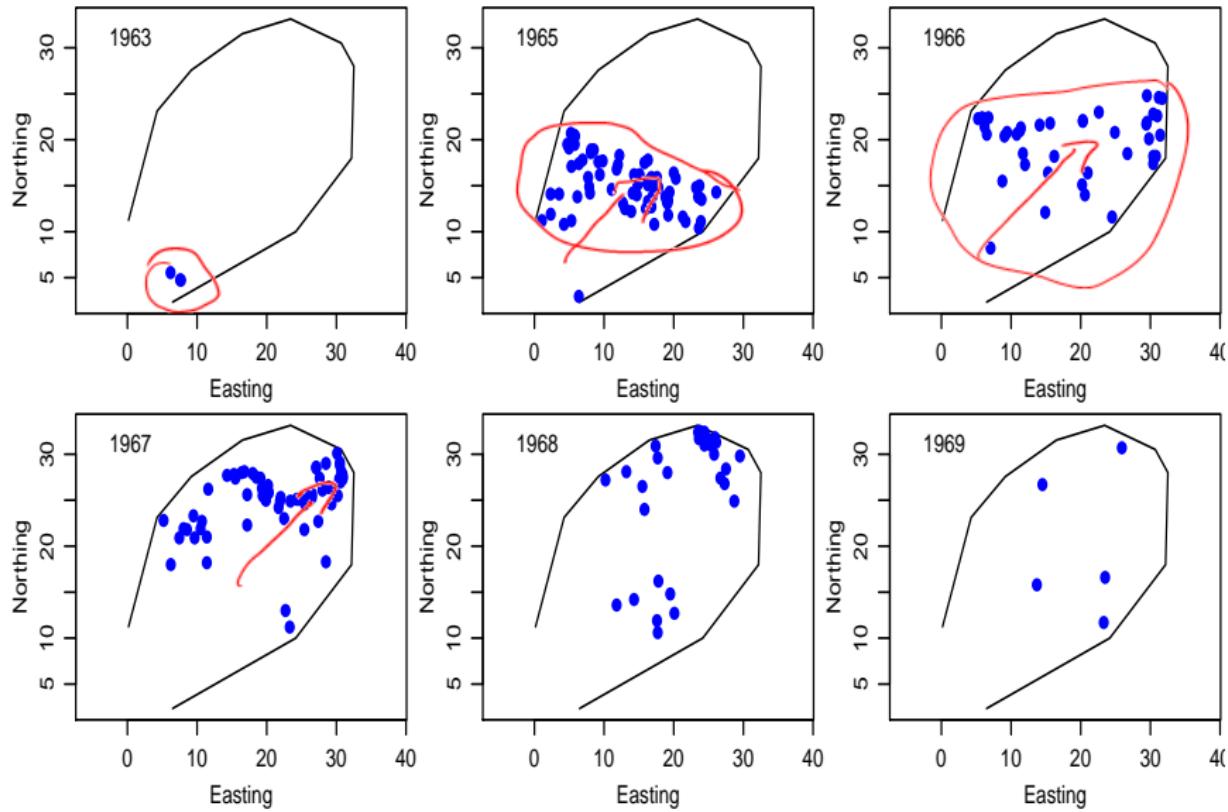
Example: Burkitt's lymphoma, Time ignoring space



Example: Burkitt's lymphoma, Space ignoring time



Example: Fox rabies in South Germany, 1963-1970, April



Biological Questions:

- Data are usually from observational or happenstance studies
 - questions not formulated before data are collected
- Many possible, some can be answered without new methods
- ignore time
 - are events clustered in space, without regard to time?
 - usual $K(x)$ or $g(x)$ analysis
- ignore space
 - are events clustered in time, without regard to space?
 - $K(t)$ in one-dimension

Biological Questions:

- Some need new techniques
- classify events by year: relative clustering
 - are events in 1966 more clustered than those in 1967?
 - Compare two $K(x)$ functions, not discussed this year
- classify events by year: spatial segregation
 - are events in 1963 in diff. places than those in 1964
 - use methods for point processes with two types of marks
 - not discussed this year
- are time and space independent?
 - If epidemic spread by contact, expect space-time clustering.
 - events close in space also are close in time.
 - How can we used space-time data to evaluate this?

Approaches / what I'll talk about:

- models (mostly simple) for space-time point processes
- mapping intensity in space x time (3D kernel)
- space-time K function
- Not discussing classical approaches for space-time clustering
 - Knox test
 - Mantel test = correlation between two distances
 - scan statistics for disease surveillance

Models:

HPR CSTR

- Space-time Poisson process:

- notation: s spatial coordinates, t time

$P[\text{event in } (s, s + ds)(t, t + dt)] = \lambda(s, t) ds dt$

- events are independent

- When interested in space-time patterns,

- don't really care about marginal distributions in space or time

- focus on interaction, so model: $\lambda(s, t) = f(s)g(t)h(s, t)$

- $f(s)$: marginal spatial intensity

- $g(t)$: marginal temporal intensity

- $h(s, t)$: interaction between space and time

- Space-time independence: above with $h(s, t) = 1$.

- $\lambda(s, t) = f(s)g(t)$

$$\log \lambda = \underbrace{S}_{\text{space}} + \underbrace{T}_{\text{time}}$$

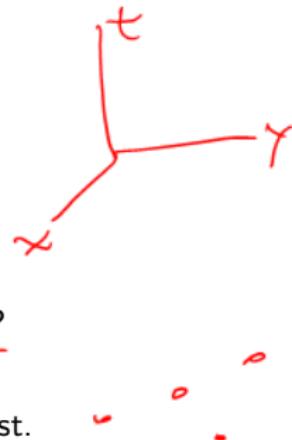
$$\log \lambda = S + \cancel{T} + \text{interaction}$$

Models:

- Complete Spatial-temporal randomness (CSTR):
 - Extend CSR to space-time volume
 - $\lambda(s, t) = \lambda$
 - $N = \# \text{ events in box } S, T \sim \text{Poisson}(\lambda ST)$.
 - $E N = \lambda ST$.
 - $\text{Var } N = \lambda ST$.
- Very few general models, mostly Markov-like, for earthquake clustering
- Modern approaches rely on process models
 - How do locations of events at time t depend on events at time $t - 1$?
 - Or, how does $\lambda(s, t)$ depend on $\lambda(s, t - 1)$?
 - Details are all problem specific
- Process models are the future of space-time analyses
- Require close interaction between domain experts and statisticians
 - Domain experts: what is an appropriate model for the process?
 - Statistician: how can you fit that model and evaluate uncertainty?

Estimating intensity

- Data: Locations (space, time) of events
- want to estimate $\hat{\lambda}(s, t)$.
- Key question: How smooth is the intensity surface?
 - data are very 'rough'
 - shift from 0 (no event) to 1 (event) over short dist.
 - Intensity surface is (probably) not that rough
 - Very very smooth \Rightarrow constant intensity
 - $\hat{\lambda} = \# \text{points} / (\text{area} * \text{time})$
 - if want to produce a map, constant intensity makes a dull map



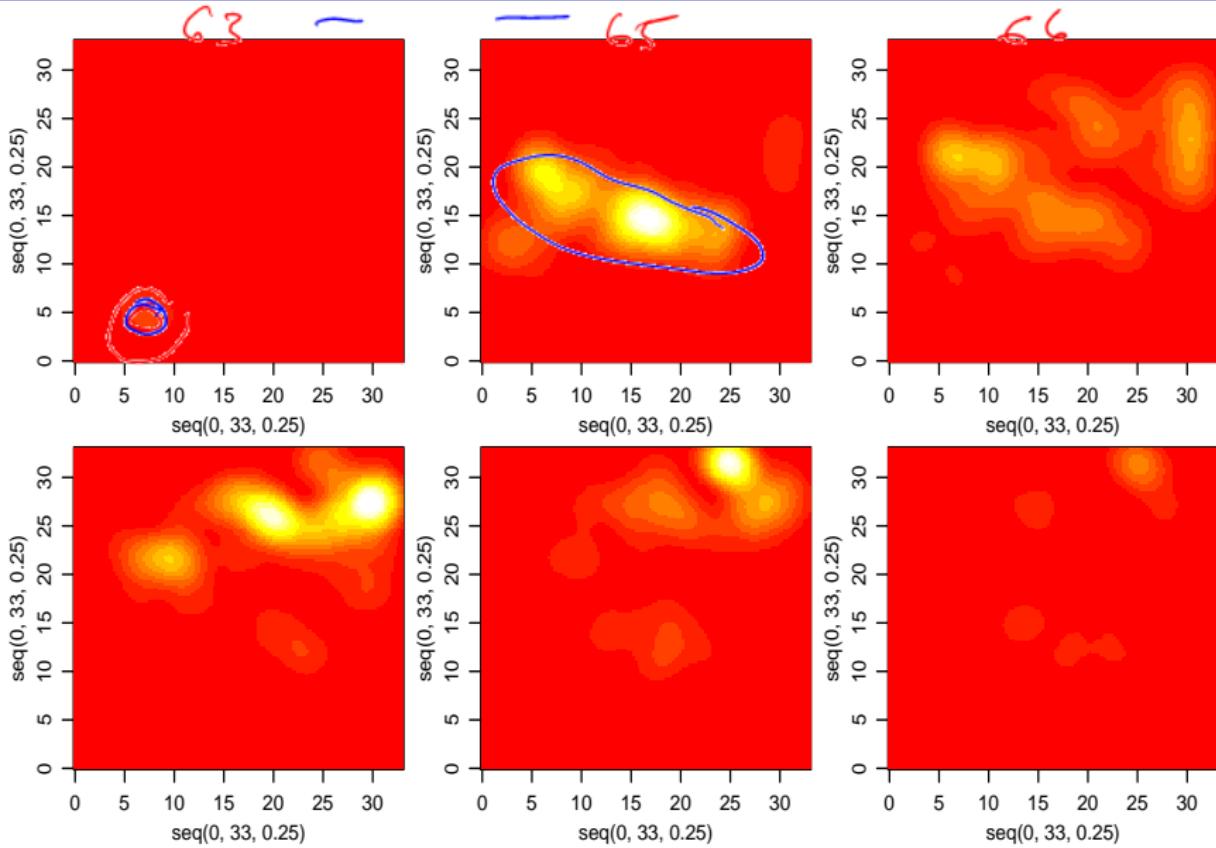
Local estimates of intensity

- Extend kernel smoothing to (S, T)
- Can be used with any form of ST data
 - Does not require contemporaneous or colocated events
- Contribution to $\hat{\lambda}(s, t)$ is $k(h)$
 - $k()$ is the kernel function
 - h is the space-time distance $\|\sigma - \sigma_i\|^2 / \tau_s^2 + (t - t_i)^2 / \tau_t^2$
- Need to specify two bandwidths:
 - For spatial smoothing, τ_s
 - For temporal smoothing, τ_t
- Can define MSE or InL, details harder
- Practical: use what seems reasonable

bandwidth

Space Spatial bandwidth
time time bandwidth
Alternative years, spatial each year

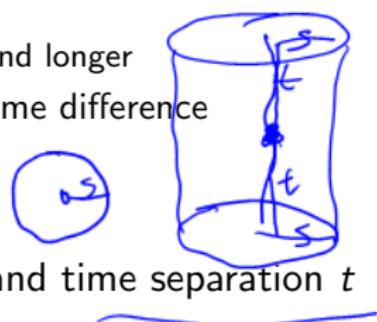
Fox rabies, $\tau_s = 4$, $\tau_t = 1.5$



Space-time clustering and space-time K function

- Q: is an event near other events? i.e. are events clustered?
 - Could look directly at $h(s, t)$, the interaction component of $\lambda(s, t)$
 - Spatial trend not same at each time point, or —
 - Temporal trend not same at each location —
- Easier to think of this as a second order property
 - evaluate using $K(s, t)$ or $g(s, t)$ pair corr
 - Focus here on $K(s, t)$
 - Only because software for this has been around longer
 - From here on, s is now a space distance, t a time difference
- $K(s, t)$ defined as:

$$K(s, t) = \frac{1}{\lambda} E \# \text{ events within distance } s \text{ and time separation } t \text{ of a randomly chosen event}$$



- λ is average # events per unit of space and unit of time

$K(s,t)$ under CSTR

- $K(s, t) = (\pi s^2)(2t)$
 - Why $2t$? Time is linear, look back and look ahead t units

- Estimator:

$$\hat{K}(s, t) = \frac{|A| T}{N^2} \sum_{i \neq j} w_{ij} v_{ij} I(d_{ij} < s) I(t_{ij} < t)$$

- $|A|$ is area of the region
- T is the total study time
- $I()$ are indicator functions, 1 if true, 0 if not
- w_{ij} and v_{ij} are space and time edge corrections

- Properties:

- $\hat{K}(s, t)$ approx. unbiased, esp. small s, t
- $\text{Var } \hat{K}(s, t)$ not constant, increases with s, t

- Testing CSTR:

- Compare $\hat{K}(s, t)$ to envelope for data simulated from CSTR.

Problem with CSTR as a null hypothesis

- When want to evaluate interaction, CSTR is too simple.
 - Marginal spatial pattern is CSR
 - Marginal temporal pattern is Poisson
- Really concerned about the interaction
 - Without specifying marginal patterns

no interaction

Independence of space and time

- If process in space and process in time are independent,

$$K(s, t) = \underbrace{K_{\text{space}}(s)}_{\text{indep}} \times \underbrace{K_{\text{time}}(t)}_{\text{indep}} \xrightarrow{\text{indep}} \hat{K} \xrightarrow{\text{indep}} \hat{K}^{\text{3D}} \Rightarrow \text{clust.}$$

- Suggests using

$\text{D}_{\text{indep}} \cdot \hat{D}(s, t) = \hat{K}(s, t) - \hat{K}_{\text{space}}(s) \times \hat{K}_{\text{time}}(t)$

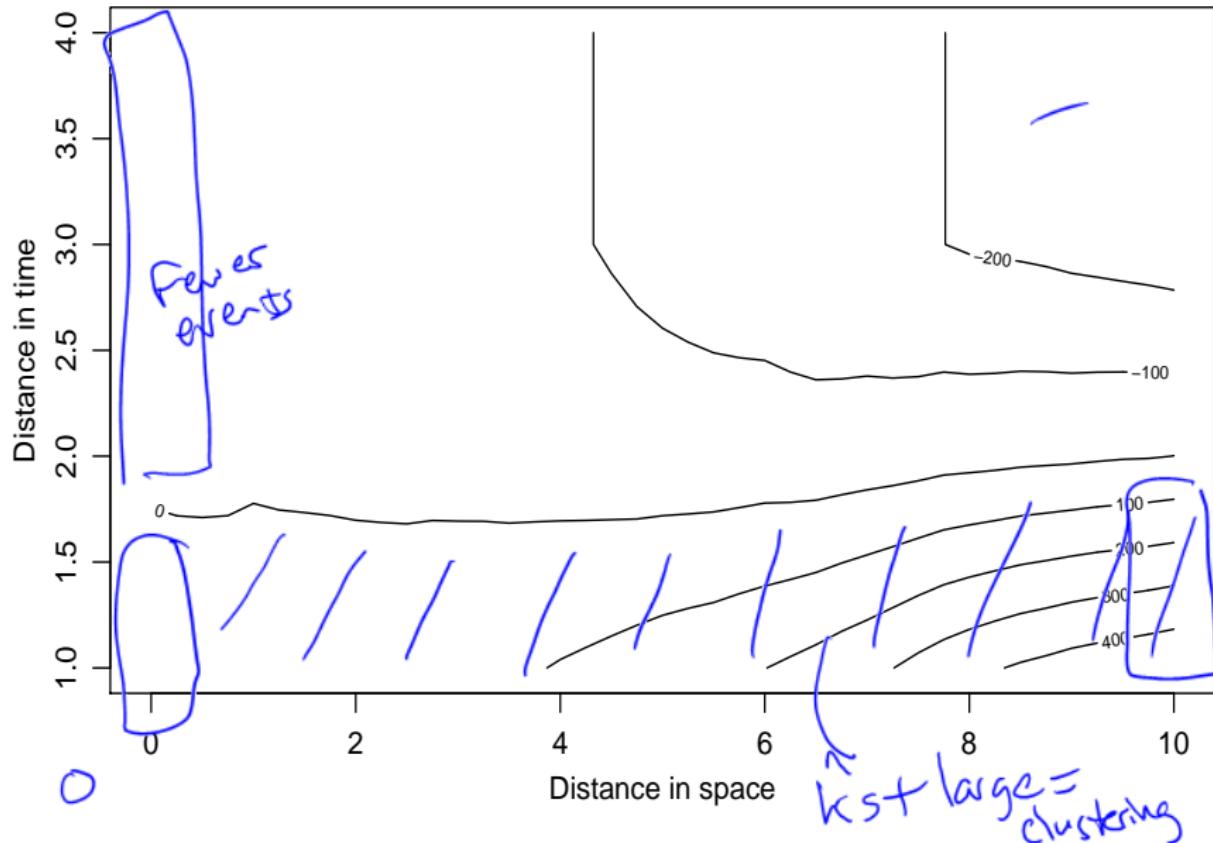
- to evaluate independence
- Idea proposed and developed by Peter Diggle
- $\hat{D}(s, t) > 0 \Rightarrow$ space-time clustering at that distance and time domain
- Interpretation:
 - Remember $\lambda K(s, t) = E[\# \text{ events w/i distance } s \text{ and time } t]$
 - $\lambda D(s, t) = E[\text{addn events due to space-time clustering}]$
 - $\hat{\lambda} \hat{D}(s, t) = \text{est. } \# \text{ addn. events w/i } s, t$

Independence of space and time

CSTR : Simulated 2 Prism / Space - time
now : Space Time constant constant
indep. type 12 7 7 12

- Test using randomization:
 - randomly reassign times to locations.
 - compute envelope for $D(s, t)$ —
 - provides answers for each $D(s, t)$ —
- These are point-wise tests (as with spatial problems)
- to get a single answer: compute a summary statistic
 - Diggle et al. 1995 suggest $\sum_s \sum_t \hat{D}(s, t) / \sqrt{\text{Var } D(s, t)}$
 - ~ 0 if no clustering, > 0 if clustering, < 0 if repulsion
 - range of s and range of t matter

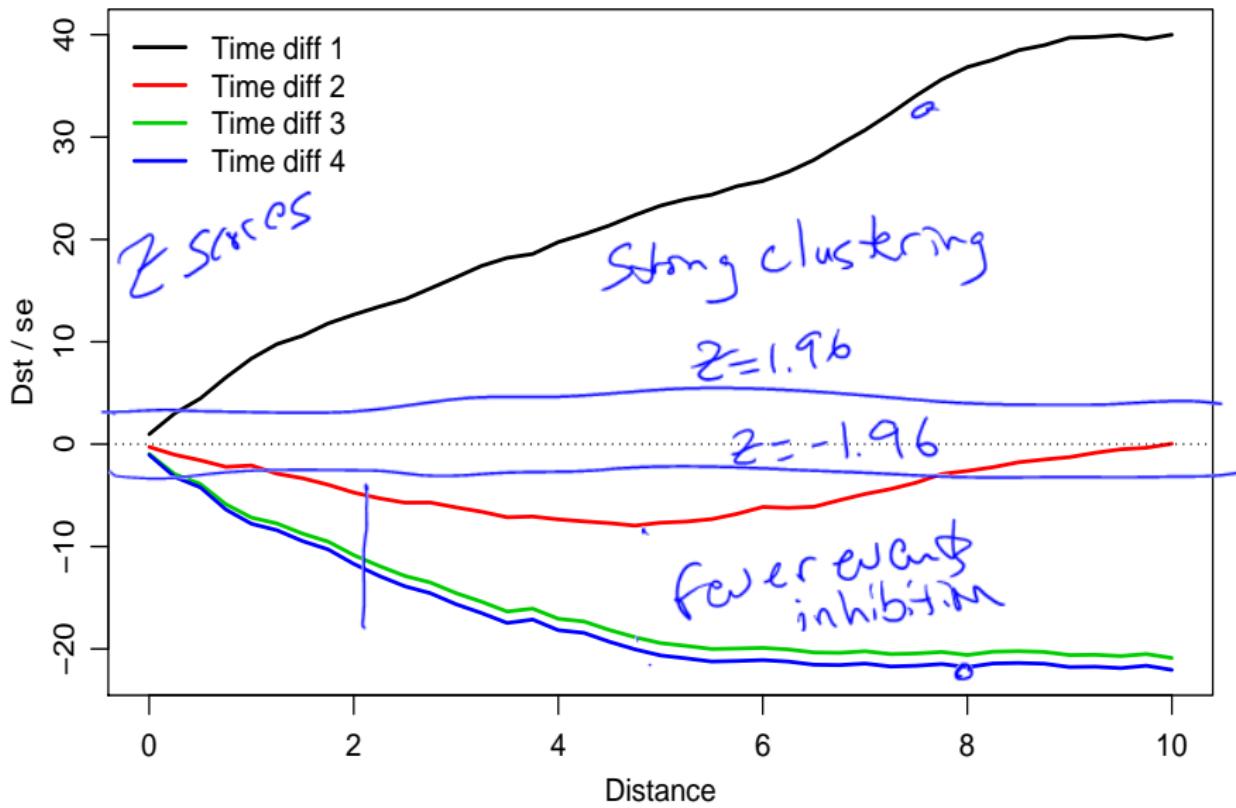
Fox rabies Dst



Conclusions for Fox rabies

- $D(s, t) > 0$ at $T=1$ year, especially large distances
 - case surrounded by more cases 1 time later at all distances
 - $\hat{D}(10, 1) = 664$, $\hat{\lambda} = 0.0257$, 17.1 extra events
 - case surrounded by fewer cases 4 times later at all distances
 - both especially so for larger distances
- Support what seen in pictures
 - Space and time not independent
 - Positive ST clustering at one year
- Is this just random variation?
- Could use Monte-Carlo envelopes
- An approximate answer:
 - can estimate se of $D(s, t)$ without simulation
- So plot $\frac{D(s, t)}{\text{se } D(s, t)}$ for $t=1, 2, 3$ or 4

Fox rabies Dst/se Dst



Conclusions for Fox rabies

- Is this just random variation?
- Use Diggle summary statistic
- At $T = 1$ year
 - obs $D(s, t)$ **larger** than all 99 random, $p=0.01$
- At $T = 4$ year
 - obs $D(s, t)$ **smaller** than all 99 random, $p=0.01$
- Consistent with a slowly moving outbreak
- Also says: if you have an outbreak here, it will clear in a couple of years.
 - so not spatially persistent
- Matches pictures, but analysis adds two useful things
 - Quantify intensity of the effects
 - Show they are more extreme than expected by chance

Summary of space-time analyses

- Lots of practically important questions ✓
- many require new methods
 - not just many spatial analyses
- can combine information across times ✓
 - Kernel smoothing of space-time point patterns ✓
 - Space-time geostatistics
- And look at space-time independence ✓
- Pictures/graphs are really really helpful
 - Provide reality check and help with interpretation
- My view of the future:
 - fitting subject-matter based models to dynamic data