Point processes in space and time

e Data: (s,t) = location (probably in 2D), time of an event

@ Examples:

Ecology: nest establishment, predation, death of tree

Plant pathology: infection of individual, death

Economics: farm consolidation, farm bankrupcy
Epidemiology: location, time of diseased individuals
Agronomy / soils: when a field planted in corn following corn
In general: where and when events occur

o Cressie calls these 'space-time shock point process’ (p 720)
e events at specific times and locations

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6¢c Spring 2020 1/24



Point processes in space and time

@ Not same as space-time survival point process

e event at a location for an interval of time
e e.g. presence of tree, infected plant
o We'll focus on shock processes

@ events at specific locations and times
o Multiple ways to think about this
e as point process in 3 dimensions (x,y,t)
o as marked spatial point process (x,y), continuous mark (time)

@ Many examples from spatial epidemiology, focus on clustering
o Is event (disease) near other events?
o near defined as near in space and near in time
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Example: Burkitt's lymphoma in Uganda
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Example: Burkitt's lymphoma, Time ignoring space
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Example: Burkitt's lymphoma, Space ignoring time
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Example: Fox rabies in South Germany, 1963-1970, April
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Biological Questio

@ Data are usually from observational or happenstance studies
@ questions not formulated before data are collected

Many possible, some can be answered without new methods

ignore time

"o are events clustered in space, without regard to time?
o usual K(x) or g(x) analysis

. ——
@ ignore space

e are events clustered in time, without regard to space?
o K(t) in one-dimension

——
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Biological Questions:

Some need new techniques

classify events by year: relative clustering

o are events in 1966 more clustered than those in 19677
o Compare two K(x) functions, not discussed this year
TT——

classify events by year: spatial segregation
o are events in 1963 in diff. places than those in 1964
e use methods for point processes with two types of marks
e not discussed this year -

are time and space independent?

o If epidemic spread by contact, expect space-time clustering‘>
e events close in space also are close in time.
e How can we used space-time data to evaluate this?
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Approaches / what I'll talk about:

models (mostly simple) for space-time point processes

mapping intensity in space x time (3D kernel)
T — t___._._._._.___...

space-time K function

Not discussing classical approaches for space-time clustering
o/ Knox test
e Mantel test = correlation between two distances

e scan statistics for disease surveillance
T T——
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Her. CSTR.

@ Space-time Poisson process:

e notation: s spatial coordinates, t time

o Plevent in (s, s+ ds)(t,t + dt)] = A(s, t) ds dt
events are independent -

- /
@ When interested in space-time patterns,— . A
: P patterms, = epedet m*t.«f@‘c‘}\
o don't really care about marginal distributions in space or time 44
e focus on interaction, so model: (s, t) = f(s)g(t)h(s,t) + W
o f(s): marginal spatial intensity -
e g(t): marginal temporal intensity q\

e h(s,t): interaction between space and time

@ Space-time independence: above with h(s,t) = 1.
OO oy n=E + T
g A =S ¥ v i cho
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e Complete Spatial-temporal randomness (CSTR):

o Extend CSR to space-time volumne
° )\(S, t) =
o N = # events in box S, T ~ Poisson(AST).
e EN=XST— — 7 -
e Var N = AST .~
@ Very few general models, mostly Markov-like, for earthquake
clustering

@ Modern approaches rely on process models
e How do locations of events at time t depend on events at time t — 17
o Or, how does A(s, t) depend on A(s,t — 1)?
o Details are all problem specific —

@ Process models are the future of space-time analyses

@ Require close interaction between domain experts and statisticians

o Domain experts: what is a appropriate model for the process?
e Statistician: how can you fit that model and evaluate uncertainty?
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Estimating intensity

_t

e Data: Locations (space,time) of events
. N >
@ want to estimate A(s, t).

o Key question: How smooth is the intensity surface?
o data are very ‘rough’
o shift from 0 (no event) to 1 (event) over short dist. .
@ Intensity surface is (probably) not that rough
e Very very smooth = constant intensity

o A= #points/(area*time)
o if wantto produce a map, constant intensity makes a dull map

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6¢c Spring 2020



Local estimates of intensity

Extend kernel smoothing to (S, T)
Can be used with any form of ST data

e Does not require contemporaneous or colocated events‘{_

e Contribution to (s, t) is k(h) Aol
o k() is the kernel function Spree Gr AN
o his the space-time distance || o — o ||? /72 + (t — t;)?/7?

@ Need to specify two bandwidths: + e K _ C(’(
o For spatial smoothing, 7 bOu’vluJ\ L\
o For temporal smoothing, 7 DM adne

Can define MSE or InL, details harder \f Qﬁﬁ‘ f@d““k md"jfoc

Practical: use what seems reasonable
% ﬁ“"“‘ g.») h
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Fox rabies, 7 :4 7+ =15
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Space-time clustering and space-time K function

@ Q: is an event near other events? i.e. are events clustered?
e Could look directly at h(s, t), the interaction component of A(s, t)

. —_— . .
o Spatial trend not same at each time point, or —
@ Temporal trend not same at each location

@ Easier to think of this as a second order property

o evaluate using K(s,t) or g(s,t) @&\ csecel
o Focus here on K(s,t

@ Only because software for this has been around longer

e From here on, s is now a space distance, t a time differe

@ K(s,t) defined as: @

K(s,t)

==
1 G .
= — E # events within distance s and time separation t
<P — _—
of a randomly chosen event

@ )\ is average # events per unit of space and unit of time
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K(s,t) under CSTR

N Al T
K(S, t) — | N|2 Z W,'J'V,'J'/(d,'j < 5)/(1‘,‘] < t)

: A

| Al is area of the region

T is the total study time

I() are indicator functions, 1 if true, O if not
wj; and vj; are space and time edge corrections

@ Properties:

o K(s, t) approx. unbiased, esp. sma!it_‘
o Var K(s, t) not constant, increases with s, t

@ Testing CSTR:
e Compare K(s,t) to envelope for data simulated from CSTR.
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Problem with CSTR as a null hypothesis

@ When want to evaluate interaction, CSTR is too simple.

e Marginal spatial pattern is CSR
e Marginal temporal pattern is Poisson

@ Really concerned about the interaction : .
v about the interact 00 kg o
o Without specifying marginal patterns
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Independence of space and time

@ If process in space and process in time are independent,
ire iIhdepencen

K(s, t) = Kspace(s) % Kiirmelt) Q _¥ 17

@ Suggests using D¢ [v<"r .

D ',r\}}[’(’ : D(s, t) = R(s, t) — Rspace(s) X Rtime(t)

-
@ to evaluate independence
@ |dea proposed and developed by Peter Dlggle

° D(s t) > 0 = space-time clustering at t that distance and time domain
‘“\'-———_—_--—
@ Interpretation:

o Remember AK(s, t) =E[# events w/i distance s and time t]
o A\D(s,t) = E[addn events due to space-time clustering]
e AD(s,t) = est. # addn. events w/i st
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Independence of space and time

ADL 5 & CW{ )i&?

@ Test using randomization: S e NS

e randomly reassign times to locations. ‘-
o compute énvelope for D(s, t)— A 7

e provides answers for each D(s, t)~

@ These are point-wise tests (as with spatial problé
@ to get a single answer: compute a summary statisy
o Diggle et al. 1995 suggest > >, (s t)/+/Var

e ~ 0 if no clustering, > 0 if cIustermg <0if repuIS|on
e range of s and range of t matter

—_— —_—
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Conclusions for Fox rabies

@ D(s,t) > 0 at T=1 year, especially large distances
e case surrounded by more cases 1 time later at all distances
o D(10,1) = 664, A = 0.0257, 17.1 extra events
o casé surrounded by fewer cases 4 times later at all distances
e both especially so for larger distances
Support what seen in pictures —
e Space and time not independent
o Positive ST clustering at one year

Is this just random variation?

eom varla on
Could use Monte-Carlo envelopes
f"_-______-"_—___—-_

An approximate answer: —
can estimate se of D(s, t) without simulation

So plot se%sfgr) for t=1,2, 3 or 4

—_—

21/24
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Fox rabies Dst/se Dst
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Conclusions for Fox rabies

@ Is this just random variation?

o Use Diggle summary statistic
o At T =1 year
e obs D(s,t) larger than all 99 random, p=0.01

——

o At T = 4 year
e obs D(s, t) smaller than all 99 random, p=0.01
@ Consistent with a slowly moving outbreak ~
@ Also says: if you have an outbreak here, it will clear in a couple of
years. A
@ so not spatially persistent
@ Matches pictures, but analysis adds two useful things

o Quantify intensity of the effects

e Show they are more extreme than expected by chance
Sl shalingil
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Summary of space-time analyses

Lots of practically important questions ~~

many require new methods
e not just many spatial analyses
@ can combine information across times -

o Kernel smoothing of space-time point patterns ¢
e Space-time geostatisti

And look at space-time independence ~

Pictures/graphs are really really helpful
e Provide reality check and help with interpretation
—_— e — -

My view of the future:
o fitting subject-matter based models to dynamic data
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